Editorial


Intratumor heterogeneity, variability and plasticity: questioning the current concepts in classification and treatment of hepatocellular carcinoma

Ralf Weiskirchen

Abstract

In the classical view, the formation of a primary tumor is the consequence of a mutational event that first affects a single cell that subsequently passes through a multitude of consecutive hyperplastic and dysplastic stages. At the end of this pathogenetic sequence a cell arises that is potentially able to expanse infinitely having capacity to form a homogenous tumor mass. In contrary to this clonal expansion concept, the majority of primary human tumors display already a startling heterogeneity that can be reflected in different morphological features, physiological activities, and genetic diversity. In the past it was speculated that this cancer cell plasticity within a tumor is the result of an adaptive process that is induced by specific inhibiting therapies. In regard to the formation of hepatocellular carcinoma (HCC) this dogma was once challenged in a recent study that analysed tumor areas that were taken from HCC patients without medical pretreatment. Most of the analyzed samples showed highly significant intratumor heterogeneity. This affected morphological attributes, immunohistochemical stainability of five tumor-associated markers [α-fetoprotein (AFP), EpCAM, CK7, CD44 and glutamine synthetase], and integrity of genes (β-catenin and p53) that are critically involved in the pathogenesis of HCC. Altogether, this study showed that intratumor heterogeneity is a frequent finding in HCC that may contribute to treatment failure and drug resistance in HCC patients.

Download Citation