Article Abstract

Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology

Authors: Ralf Weiskirchen, Frank Tacke

Abstract

The liver is a central immunological organ. Liver resident macrophages, Kupffer cells (KC), but also sinusoidal endothelial cells, dendritic cells (DC) and other immune cells are involved in balancing immunity and tolerance against pathogens, commensals or food antigens. Hepatic stellate cells (HSCs) have been primarily characterized as the main effector cells in liver fibrosis, due to their capacity to transdifferentiate into collagen-producing myofibroblasts (MFB). More recent studies elucidated the fundamental role of HSC in liver immunology. HSC are not only the major storage site for dietary vitamin A (Vit A) (retinol, retinoic acid), which is essential for proper function of the immune system. This pericyte further represents a versatile source of many soluble immunological active factors including cytokines [e.g., interleukin 17 (IL-17)] and chemokines [C-C motif chemokine (ligand) 2 (CCL2)], may act as an antigen presenting cell (APC), and has autophagy activity. Additionally, it responds to many immunological triggers via toll-like receptors (TLR) (e.g., TLR4, TLR9) and transduces signals through pathways and mediators traditionally found in immune cells, including the Hedgehog (Hh) pathway or inflammasome activation. Overall, HSC promote rather immune-suppressive responses in homeostasis, like induction of regulatory T cells (Treg), T cell apoptosis (via B7-H1, PDL-1) or inhibition of cytotoxic CD8 T cells. In conditions of liver injury, HSC are important sensors of altered tissue integrity and initiators of innate immune cell activation. Vice versa, several immune cell subtypes interact directly or via soluble mediators with HSC. Such interactions include the mutual activation of HSC (towards MFB) and macrophages or pro-apoptotic signals from natural killer (NK), natural killer T (NKT) and gamma-delta T cells (γδ T-cells) on activated HSC. Current directions of research investigate the immune-modulating functions of HSC in the environment of liver tumors, cellular heterogeneity or interactions promoting HSC deactivation during resolution of liver fibrosis. Understanding the role of HSC as central regulators of liver immunology may lead to novel therapeutic strategies for chronic liver diseases.