Faecal microbiota transplantation as an elixir of youth

Craig Haifer¹,², Sudarshan Paramsothy², Rupert W. Leong¹,²,³

¹Concord Clinical School, The University of Sydney, Sydney, Australia; ²Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, Australia; ³South Western Clinical School, UNSW, Sydney, Australia

Correspondence to: Rupert W. Leong. Concord Repatriation General Hospital, Hospital Road, Concord NSW 2139, Australia.
Email: rupertleong@outlook.com.


Submitted Oct 28, 2019. Accepted for publication Nov 05, 2019.
doi: 10.21037/hbsn.2019.11.17
View this article at: http://dx.doi.org/10.21037/hbsn.2019.11.17

The intestinal microbiota has been increasingly seen to be responsible for various gastrointestinal disorders such as inflammatory bowel diseases (1). However, their effects on systemic physiological processes unrelated to the intestinal tract are of increasing interest. In this issue of Nature Medicine, Bárcena et al. investigated whether intestinal microbiota might influence aging (2). Using 16S RNA and metagenomic sequencing on mouse models and humans with progeroid syndrome compared to healthy centenarian controls with a prolonged lifespan, the authors identified that a loss of Akkermansia muciniphila and Dehalobacterium and enrichment of Parabacteroides and Prevotella spp to be significantly associated with the aging process. There was consistency of the two cohorts in terms of differences in microbial composition with suppressed or enriched species. The consistency between human cohorts and mouse models allowed for further interventional research on the animal model. To prove causality rather than simply association, faecal microbiota transplantation (FMT) was performed using wild type control mice as donors to the progeria mouse model. FMT refers to the transfer of intestinal organisms from healthy donor to a disease recipient in order to reverse intestinal dysbiosis. Mice recipients of FMT showed delayed loss of body weight and temperature, avoided hypoglycaemia and renal perivascular fibrosis, and had improved intestinal inflammation markers, which are biomarkers of the progeroid disease phenotype. Importantly, progeria mouse who received FMT had improved survival versus control (160 vs. 140 days, P=0.0029). Separately, progeria mice supplemented with A. muciniphila also showed modest life span extension when compared with controls. Lifespan extension was associated with enrichment of secondary bile acid synthesis and other metabolites, demonstrating how a changing intestinal microbiome may alter the underlying physiology through shifts in metabolic pathways.

Dysbiosis and subsequent changes in metabolic pathways might be responsible systemic processes such as aging. FMT seems effective in “correcting” the dysbiosis found in progeria mice and the study begs the question whether advancing this research further might yield an ‘elixir of youth’, that is, bacterial products that when enriched, results in an anti-aging therapy. The impact of this study is, therefore, potentially astronomical. Enrichment of Prevotella species in the intestinal microbiome has been consistently associated with elevated systemic inflammation and inflammatory conditions such as rheumatoid arthritis (3). Importantly, the presence of A. muciniphila species reduced intestinal inflammation, improves gut-barrier integrity and decreased the development of obesity and diabetes (4-6). This link between A. Muciniphila and health is not new. The species is especially prevalent in subjects that are fasting, as the organism prefers to receive its nutritional source from the mucus lining the intestinal tract than ingested food (7). Therefore, there are links between the present study with the known health benefits of intermittent and prolonged fasting, which enhances the proportion of A. Muciniphila by reciprocal suppression of other intestinal microbial species that requires food.

The potential links between the microbial constituents and aging might be through confounding factors of concurrent disease, diet and lifestyle. The study
demonstrated the association at different levels but the FMT data was limited to mice. Whether the intervention is an elixir of youth in humans remains speculative. Whether the magnitude of benefit from FMT is higher than through intermittent or prolonged fasting and indirectly through avoidance of obesity, also requires further research. Nevertheless, Bárcena and colleagues successfully highlighted microbial changes to be associated with differential aging phenotypes and demonstrated that the aging process may be manipulated.

Acknowledgments

None.

Footnote

Conflicts of Interest: S Paramsothy is a consultant for Finch Therapeutics and received speaker fees from Ferring, Janssen. RW Leong reports advisory board fees from AbbVie, Aspen, Celgene, Ferring, Gilead, Hospira, Janssen, MSD, Pfizer, and Takeda; research fees from Gastrointestinal Society of Australia (GESa), Endochoice, Janssen, National Health and Medical Research Council of Australia, Shire, and Takeda; and speaker fees from Emerge Health, Ferring, Janssen, Shire, and Takeda. C Haifer has no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

References