The issue of the cost of robotic distal pancreatectomies

Benedetto Ielpo¹, Javier Nuñez-Alfonsel², Maria Victoria Diago¹, Álvaro Hidalgo⁴, Yolanda Quijano³, Emilio Vicente³

¹Department of General Surgery, Division of HBP Surgery, Leon University Hospital, Leon, Spain; ²Instituto de Validación de la Eficiencia Clínica, Fundación de Investigación HM Hospitals, Madrid, Spain; ³Department of General Surgery, Sanchinarro University Hospital HM, Madrid, Spain; ⁴Department of Economics and Finance, Universidad de Castilla la Mancha, Toledo, Spain

Correspondence to: Javier Nuñez-Alfonsel. Instituto de Validación de la Eficiencia Clínica (IVEC), Fundación de Investigación HM Hospitals, Madrid, Spain. Email: jnalfonse@fundacionhm.com.

Submitted Sep 20, 2019. Accepted for publication Sep 27, 2019.

doi: 10.21037/hbsn.2019.09.23

View this article at: http://dx.doi.org/10.21037/hbsn.2019.09.23

Robotic approach is already a new technological system in surgery and its potential advantages such as ergonomics, reduced tremor, 3D view and improved instruments movements have been well described (1,2). Concerning the current literature, the studies addressing the robotic benefits on left pancreatectomies are few. However, it has been showed that robotic distal pancreatectomy is both feasible and safe as well as the laparoscopic and the standard open approach. Although, there is a lack of high-level economic studies comparing these techniques (3-6).

It is clear that the major questionable drawback of robotic in surgery is still its high cost, which should be matched to its benefits for the patient and operating surgeons. For the healthcare system, whenever a new technology is introduced to a hospital, such as that of the robotic system, cost versus benefits is an issue. Therefore, among surgical community, there remains mixed opinion regarding the robotic surgery cost compared with laparoscopy, especially in distal pancreatic resection, which is probably being in the last years the most performed robotic procedure in the hepatobiliary-pancreatic field.

The raison why costs of robotic approach is poorly reported is mainly due to its difficult calculation. Despite equity and hardware are easily to be calculated, the overall cost impact of a new surgical procedure are harder to be quantified. In fact, costs should include operative costs, hospitalization costs, visiting nurses, rehabilitation facility, job loss and missed work after surgery and acquisition cost of the system including its amortization. The exact calculation of all these factors is challenging and requires the help of an economic data manager.

Given this background, the paper of Pessaux group is very interesting and useful, examining the cost of the different approaches for pancreatic left resection (7).

In their analysis they included a total of 89 patients (21 robotic, 25 laparoscopic, and 43 open procedures) along a period of time of 3 years including 2 centers. It is true that the load number for each center is low and it might have influenced the results. However, this load number is in line with the majority of previous report of robotic distal pancreatectomies (5).

Concomitant with previous reports (1), they found that the robotic distal pancreatectomy is a safe and reproducible procedure, achieving comparable postoperative outcomes, similar oncological outcomes and reduced blood loss. But the most relevant aspect that they found is that the cost of robotic approach is similar to that of the laparoscopy (21,219 vs. 22,150 Euros) and significantly lower compared with the open approach (30,929 Euros; P=0.02).

As expected the operative costs were higher in the robotic group (2,152 vs. 36 Euros; P=0.0001) but at the end balanced by the reduced cost of the hospital stay of the robotic approach (14,522 vs. 17,608 Euros; P=0.02).

These results agree with our previous report were the overall cost of the robotic were similar to that of the laparoscopy mainly because of the decreased hospital stay and conversion as well (6).

Interestingly, the study of Pessaux (7) and that of some
authors also, did not include in their analysis the acquisition costs and maintenance costs of the robot, because these costs, due to the multidisciplinary nature of the device, are reduced by the multidisciplinary use of the device. This is what we can define as the hospital amortization cost that, even if it is difficult, it should be included in the cost analysis.

Costs of a technique includes direct and indirect cost. The direct costs are made of all items and costs of the services that take care of the patient during his hospitalization, such as surgical equipment, the operating room, patient room, lab tests, nursing and physical therapy. On the other hand, the indirect cost includes the overhead cost of the building, the amortization of capital equipment and supplies, the cost of the maintenance of services, utilities and administrative staff, as well. Robot-specific costs may be divided in direct costs, which are specific to robotic pancreatic distal resection which are robotic drapes, disposable instruments, and other supplies which are required for the surgical use of the robot and in indirect cost, which refers to hospital overhead associated with each surgery, such as building depreciation, salaries of hospital administrators, and hospital services. Robot-specific indirect costs include the purchase price of the robot, which is often reported in the literature as amortized cost, or the total purchase price divided by case load number and capital depreciation and service costs of the robotic system. In this case, the calculation of the indirect cost is really challenging and it the raison of its missing in the analysis.

To the best of our knowledge, including the paper herein discussed, there are only 10 papers reporting costs of distal robotic pancreatectomies (6-15). All the costs are summarized in the Table 1 and it is clear that cost difference vary among the series.

The first report was by Waters et al. in 2010 (13), where overall cost of robotic distal pancreatectomy was lower compared with laparoscopic approach ($10,588 vs. $15,521), even if operative costs were higher for robotic distal pancreatectomy ($3,146 vs. $5,016). According to our analysis, only 4 out 10 studies reported a significative higher overall cost of robotic distal pancreatectomies (8,10,11,15).

However, cost may also vary depending on experience gained with the surgery as it is commented by Pessaux (7).

However, the simplistic overall cost of an operation can gives only limited information about the benefit of a new technique. Only a cost-effectiveness analysis can help to understand the real difference between two different operations. It is paramount to distinguish a cost analysis of
a health care sector perspective from that of a societal or patient's approach.

If the health care sector analysis includes mainly only a cost analysis study, on the other hand, the societal perspective includes the duration of sick leave after a surgery, patient satisfaction, symptom resolution and health related quality of life, which is the real cost-effectiveness study, about which, in the current literature, there is data only in one study from Gurusamy et al. which compare open versus laparoscopy and none including robotic (16). Therefore, a real cost effectiveness analysis of robotic vs. laparoscopic distal pancreatectomy is still missing.

However, currently, there is one ongoing controlled trial of the Dutch Pancreatic Cancer Group which aims to compare open to laparoscopy to robotic distal pancreatectomy including a cost-effectiveness analysis (17). In my opinion, this randomized study suffers from important limitation being multicenter (17 centers recruiting a total of 102 patients) which may invalidate some results using different surgical procedures and devices with a different learning curve from each center.

It is paramount to consider that costs usually vary during the period of time from its setting, and this is especially true for the robotic system.

It is paramount to know that both fixed and variable costs of the robot system have the potential to decrease over time as a result of competitive pricing, standardized routine and proficiency.

We should expect that in the near future, there will be a decrease in overall robotics costs, because of some key patents have recently expired and new devices are expected to be available in the next two years.

Furthermore, we must consider that the laparoscopy is in continuous evolution as well, taking advantage from the robotic development, such as the incorporation of the flexible robotic optic, the 3D vision and fluorescence and the new laparoscopic endowrist instruments which all of them include some technologies derivated from the robotic system. In a near future there might be a fusion of the laparoscopy with the robotic approach, a process that can be named “robotization of the laparoscopy”. Future research would benefit from evaluating the utilization implications and cost of this new system.

Acknowledgments

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

References